
book August 29, 2007

Chapter Seven

Optimization and all that

book August 29, 2007

294 CHAPTER 7

SUMMARY

This chapter explores the technical methods required to find the quantities
discussed in the previous chapter (maximum likelihood estimates, posterior
means, and profile confidence limits). The first section covers methods of
numerical optimization for finding MLEs and Bayesian posterior modes, the
second section introduces Markov chain Monte Carlo, a general algorithm
for finding posterior means and credible intervals, and the third section
discusses methods for finding confidence intervals for quantities that are
not parameters of a given model.

7.1 INTRODUCTION

Now we can think about the nitty-gritty details of fitting models to data.
Remember that we’re trying to find the parameters that give the maximum
likelihood for the comparison between the fitted model(s) and the data.
(From now on I will discuss the problem in terms of finding the minimum
negative log-likelihood, although all the methods apply to finding maxima
as well.) The first section focuses on methods for finding minima of curves
and surfaces. These methods apply whether we are looking for maximum
likelihood estimates, profile confidence limits, or Bayesian posterior modes
(which are an important starting point in Bayesian analyses (Gelman et al.,
1996)). Although there are many numerical minimization algorithms, I will
only discuss the basic properties of few common ones (most of which are
built into R), and their strengths and weaknesses. Many of these methods
are discussed in more detail by Press et al. (1994). The second section
introduces Markov chain Monte Carlo methods, which are the foundation
of modern Bayesian analysis. MCMC methods feel a little bit like magic,
but they follow simple rules that are not too hard to understand. The last
section tackles a more specific but very common problem, that of finding
confidence limits on a quantity that is not a parameter of the model being
fitted. There are many different ways to tackle this problem, varying in
accuracy and difficulty. It’s useful to have several in your toolbox, and
learning about them also helps you gain a deeper understanding of the
shapes of likelihood and posterior probability surfaces.

7.2 FITTING METHODS

7.2.1 Brute force/direct search

The simplest way to find a maximum (minimum) is to evaluate the function
for a wide range of parameter values and see which one gives the best answer.
In R, you would make up a vector of parameter values to try (perhaps a

book August 29, 2007

OPTIMIZATION AND ALL THAT 295

sampling grid 4

sampling grid 3

sampling grid 2

sampling grid 1

plower pupper

∆∆p

●

●

Figure 7.1 Direct search grids for a hypothetical negative log-likelihood function. Grids 1
and 4 will eventually find the correct minimum (open point). Grids 2 and 3
will miss it, finding the false minimum (closed point) instead. Grid 2 misses
becauses its range is too small; grid 3 misses because its resolution is too small.

vector for each of several parameters); use sapply (for a single parameter) or
for loops to calculate and save the negative log-likelihood (or posterior [log-
]likelihood) for each value; then use which(x==min(x)) (or which.min(x))
to see which value of the parameters gave the minimum. (You may be able
to use outer to evaluate a matrix of all combinations of two parameters,
but you have to be careful to use a vectorized likelihood function.)

The big problem with direct search is speed, or lack of it: the reso-
lution of your answer is limited by the resolution (grid size) and range of
your search, and the time it takes is the product of the resolution and the
range. Suppose you try all values between plower and pupper with a resolu-
tion ∆p (e.g. from 0 to 10 by steps of 0.1). Figure 7.1 shows a made-up
example—somewhat pathological, but not much worse than some real like-
lihood surfaces I’ve tried to fit. Obviously, the point you’re looking for must
fall in the range you’re sampling: sampling grid #2 in the figure misses the
real minimum by looking at too small a range.

book August 29, 2007

296 CHAPTER 7

You can also miss a sharp, narrow minimum, even if you sample the
right range, by using too large a ∆p — sampling grid #3 in Figure 7.1.
There are no simple rules for determining the range and ∆p to use. You
must know the ecological meaning of your parameters well enough that you
can guess at an appropriate order of magnitude to start with. For small
numbers of parameters you can draw curves or contours of your results to
double-check that nothing looks funny, but for larger models it’s difficult to
draw the appropriate surfaces.

Furthermore, even if you use an appropriate sampling grid, you will
only know the answer to within ∆p. If you use a smaller ∆p, you multiply
the number of values you have to evaluate. A good general strategy for
direct search is to start with a fairly coarse grid (although not as coarse
as sampling grid #3 in Figure 7.1), find the sub-region that contains the
minimum, and then “zoom in” on that region by making both the range
and ∆p smaller, as in sampling grid #4. You can often achieve fairly good
results this way, but almost always less efficiently than with one of the more
sophisticated approaches covered in the rest of the chapter.

The advantages of direct search are (1) it’s simple and (2) it’s so dumb
that it’s hard to fool: provided you use a reasonable range and ∆p, it won’t
be led astray by features like multiple minima or discontinuities that will
confuse other, more sophisticated approaches. The real problem with direct
search is that it’s slow because it takes no advantage of the geometry of the
surface. If it takes more than a few seconds to evaluate the likelihood for a
particular set of parameters, or if you have many parameters (which leads
to many many combinations of parameters to evaluate), direct search won’t
be feasible.

For example, to do direct search on the parameters of the Gamma-
distributed myxomatosis data (ignoring the temporal variation), we would
set the range and grid size for shape and scale:

> data(MyxoTiter_sum)

> myxdat = subset(MyxoTiter_sum, grade == 1)

> gm = mean(myxdat$titer)

> cv = var(myxdat$titer)/mean(myxdat$titer)

> shape0 = gm/cv

> scale0 = cv

In Chapter 6, we used the method of moments to determine starting values
of shape (53.9) and scale (0.13). We’ll try shape parameters from 10 to 100

book August 29, 2007

OPTIMIZATION AND ALL THAT 297

with ∆ shape=1, and scale parameters from 0.01 to 0.3 with ∆ scale=0.01.

> shapevec = 10:100

> scalevec = seq(0.01, 0.3, by = 0.01)

Using the gammaNLL1 negative log-likelihood function from p. 235:

> surf = matrix(nrow = length(shapevec), ncol = length(scalevec))

> for (i in 1:length(shapevec)) {

+ for (j in 1:length(scalevec)) {

+ surf[i, j] = gammaNLL1(shapevec[i], scalevec[j])

+ }

+ }

Draw the contour plot:

> contour(shapevec, scalevec, log10(surf))

Or you can do this more automatically with the curve3d function
from the emdbook package:

> curve3d(log10(gammaNLL1(x, y)), from = c(10, 0.01),

+ to = c(100, 0.3), n = c(91, 30), sys3d = "image")

The gridsearch2d function (also in emdbook) will let you zoom in on
a negative log-likelihood surface:

> gridsearch2d(gammaNLL1, v1min = 10, v2min = 0.01,

+ v1max = 100, v2max = 0.3, logz = TRUE)

7.2.2 Derivative-based methods

The opposite extreme from direct search is to make strong assumptions
about the geometry of the likelihood surface: typically, that it is smooth
(continuous with continuous first and second derivatives) and has only one
minimum. Then at the minimum point the derivative is zero: the gradient,
the vector of the derivatives of the surface with respect to all the parameters,
is a vector of all zeros. Most numerical optimization methods other than

book August 29, 2007

298 CHAPTER 7

●f((x0))
f′′((x0))

x0x1

●

f((x0)) f′′((x0))

Figure 7.2 Newton’s method: schematic

direct search use some variant of the criterion that the derivative must be
close to zero at the minimum in order to decide when to stop. So-called
derivative-based methods also use information about the first and second
derivatives to move quickly to the minimum.

The simplest derivative-based method is Newton’s method, also called
the Newton-Raphson method, Newton’s method is a general algorithm for
discovering the places where a function crosses zero, called its roots. In
general, if we have a function f(x) and a starting guess x0, we calculate the
value f(x0) and the value of the derivative at x0, f ′(x0). Then we extrap-
olate linearly to try to find the root: x1 = x0 − f(x0)/f ′(x0) (Figure 7.2).
We iterate this process until we reach a point where the absolute value of
the function is “small enough” — typically 10−6 or smaller.

While calculating the derivatives of the objective function analytically
is the most efficient procedure, it is often convenient and sometimes neces-

book August 29, 2007

OPTIMIZATION AND ALL THAT 299

D
er

iv
at

iv
e

of
 −

L ● ●●

1

2

3

−20

−10

0

10

start

p (probability of success per trial)

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

0.60 0.65 0.70 0.75 0.80

7

8

9

10

1

23

Figure 7.3 Newton’s method: Top: numbered circles represent sequential guesses for the
parameter p (starting from guess #1 at 0.6); a dotted gray line joins the current
guess with the value of the derivative for that value of the parameter; and solid
lines “shoot” over to the horizontal axis to find the next guess for p. Bottom:
Likelihood curve.

book August 29, 2007

300 CHAPTER 7

sary to approximate the derivatives numerically using finite differences:

df(x)
dx

= lim
∆x→0

∆f(x)
∆x

≈ f(x + ∆x)− f(x)
∆x

, for small ∆x (7.2.1)

R’s optim function uses finite differences by default, but it sometimes runs
into trouble with both speed (calculating finite differences for an n-parameter
model requires an additional n function evaluations for each step) and sta-
bility. Calculating finite differences requires you to pick a ∆x: optim uses
∆x = 0.001 by default, but you can change this with control=list(ndeps=c(...))
within an optim or mle2 call, where the dots stand for a vector of ∆x val-
ues, one for each parameter. You can also change the effective value of ∆x
by changing the parameter scale, control=list(parscale=c(...)); ∆xi

is defined relative to the parameter scale, as parscale[i]*ndeps[i]. If
∆x is too large, the finite difference approximation will be poor; if it is too
small, you may run into trouble with round-off error.

In minimization problems, we actually want to find the root of the
derivative of the (negative) log-likelihood function, which means we need
to find the second derivative of the objective function. That is, instead
of taking f(x) and calculating f ′(x) by differentiation or finite differencing
to figure out the slope and project our next guess, Newton’s method for
minima takes f ′(x) and calculates f ′′(x) (the curvature) to approximate
where f ′(x) = 0.

Using the binomial seed predation data from the last chapter and
starting with a guess of p = 0.6, Figure 7.3 and the following table show
how Newton’s method converges quickly to p = 0.75 (for clarity, the figure
shows only the first three steps of the process):

Guess (x) f ′(x) f ′′(x)
1 0.600000 −25.000 145.833
2 0.771429 4.861 241.818
3 0.751326 0.284 214.856
4 0.750005 0.001 213.339
5 0.750000 0.000 213.333

Newton’s method is simple and converges quickly. The precision of the an-
swer rapidly increases with additional iterations. It also generalizes easily to
multiple parameters: just calculate the first and second partial derivatives
with respect to all the parameters and use linear extrapolation to look for
the root. However, if the initial guess is poor or if the likelihood surface
has a funny shape, Newton’s method can misbehave — overshooting the
right answer or oscillating around it. Various modifications of Newton’s

book August 29, 2007

OPTIMIZATION AND ALL THAT 301

method mitigate some of these problems (Press et al., 1994), and other
methods called “quasi-Newton” methods use the general idea of calculat-
ing derivatives to iteratively approximate the root of the derivatives. The
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm built into R’s optim
code is probably the most widespread quasi-Newton method.

Use BFGS whenever you have a relatively well-behaved (i.e., smooth)
likelihood surface, reasonable starting conditions, and efficiency is impor-
tant. If you can calculate an analytical formula for the derivatives, write an
R function to compute it for a particular parameter vector, and supply it
to optim via the gr argument (see the examples in ?gr), you will avoid the
finite difference calculations and get a faster and more stable solution.

As with all optimization methods, you must be able to estimate rea-
sonable starting parameter values. Sometimes a likelihood surface will be-
come flat for really bad fits — once the parameters are sufficiently far off
the correct answer, changing them may make little difference in the good-
ness of fit. Since the log-likelihood will be nearly constant, its derivative
will be nearly zero. Derivative-based methods that start from implausible
values (or any optimization procedure that uses a “flatness” criterion to de-
cide when to stop, including most of those built into optim) may find this
worst-case scenario instead of the minimum you sought.

More often, specifying ridiculous starting values will give infinite or
NA values, which R’s optimization routines will choke on. Although most
of the optimization routines can handle occasional NAs, the negative log-
likelihood must be finite for the starting values. You should always test
your negative log-likelihood functions at the proposed starting conditions
to make sure they give finite answers; also try tweaking the parameters in
the direction you think might be toward a better fit, and see if the negative
log-likelihood decreases. If you get non-finite values (Inf, NA, or NaN), check
that your parameters are really sensible. If you think they should be OK,
check for NAs in your data, or see if you have made any numerical mistakes
like dividing by zero, taking logarithms of zero or negative numbers, or
exponentiating large numbers (R thinks exp(x) is infinite for any x > 710).
Exponentiating negative numbers of large magnitude is not necessarily a
problem, but if they “underflow” and become zero (R thinks exp(x) is 0
for any x < −746) you may get errors if you divide by them or calculate
a likelihood of a data value that has zero probability. Some log-likelihood
functions contain terms like x log(x), which we can recognize should be zero
but R treats as NaN. You can use if or ifelse in your likelihood functions
to work around special cases, for example ifelse(x==0,0,x*log(x)). If
you have to, break down the sum in your negative log-likelihood function
and see which particular data points are causing the problem (e.g. if L is a

book August 29, 2007

302 CHAPTER 7

vector of negative log-likelihoods, try which(!is.finite(L))).

If your surface is not smooth — if it has discontinuities or if round-off
error or noise makes it “bumpy”— then derivative-based methods will work
badly, particularly with finite differencing. When derivative-based methods
hit a bump in the likelihood surface, they often project the next guess to
be very far away, sometimes so far away that the negative log-likelihood
calculation makes no sense (e.g. negative parameter values). In this case,
you will need to try an optimization method that avoids derivatives.

7.2.3 Derivative-free methods

In between the brute force of direct search and the sometimes delicate
derivative-based methods are derivative-free methods, which use some in-
formation about the surface but do not rely on smoothness.

7.2.3.1 One-dimensional algorithms

One-dimensional minimization is easy because once you have bracketed a
minimum (i.e., you can find two parameter values, one of which is above
and one of which is below the parameter value that gives the minimum neg-
ative log-likelihood) you can always find the minimum by interpolation. R’s
optimize function is a one-dimensional search algorithm that uses Brent’s
method, which is a combination of golden section search and parabolic inter-
polation (Press et al., 1994). Golden-section search attempts to “sandwich”
the minimum, based on the heights (negative log-likelihoods) of a few points;
parabolic interpolation fits a quadratic function (a parabola) to three points
at a time and extrapolates to the minimum of the parabola. If you have
a one-dimensional problem (i.e. a one-parameter model), optimize can
usually solve it quickly and precisely. The only potential drawback is that
optimize, like optim, can’t easily calculate confidence intervals. If you need
confidence intervals, use mle2 instead∗.

7.2.3.2 Nelder-Mead simplex

The simplest and probably most widely used derivative-free minimization
algorithm that works in multiple dimensions (it’s optim’s default) is the

∗mle and mle2 use method="BFGS" by default. Nelder-Mead optimization (see below) is unre-
liable in one dimension and R will warn you if you try to use it to optimize a single parameter.

book August 29, 2007

OPTIMIZATION AND ALL THAT 303

Nelder-Mead simplex, devised by Nelder and Mead in 1965 †.

Rather than starting with a single parameter combination (which you
can think of as a point in n-dimensional parameter space) Nelder-Mead picks
n +1 parameter combinations that form the vertices of an initial simplex—
the simplest shape possible in n-dimensions∗. In two dimensions, a simplex
is three points (each of which represents a pair of parameter values) forming
a triangle; in three dimensions, a simplex is 4 points (each of which is a
triplet of parameter values) forming a pyramid or tetrahedron; in higher
dimensions, it’s n + 1 points which we just call an n-dimensional simplex.
The Nelder-Mead algorithm then evaluates the likelihood at each vertex,
which is the “height” of the surface at that point, and move the worst point
in the simplex according to a simple set of rules:

� start by going in what seems to the best direction by reflecting the
high (worst) point in the simplex through the face opposite it;

� if the goodness-of-fit at the new point is better than the best (lowest)
other point in the simplex, double the length of the jump in that
direction;

� if this jump was bad—the height at the new point is worse than the
second-worst point in the simplex—then try a point that’s only half
as far out as the initial try;

� if this second try, closer to the original, is also bad, then contract
the simplex around the current best (lowest) point [not shown in Fig-
ure 7.4].

The Nelder-Mead algorithm works well in a wide variety of situations, al-
though it’s not foolproof (nothing is) and it’s not particularly efficient.

We give the Nelder-Mead algorithm a set of starting parameter values
and it displaces these coordinates slightly to get its starting simplex. There-
after, it takes steps alternating between simple reflection and expanded re-
flection, moving rapidly downhill across the contour lines and increasing
both shape and scale parameters. Eventually it finds that it has gone too
far, alternating reflections and contractions to “turn the corner”. Once it
has turned, it proceeds very rapidly down the contour line, alternating re-
flections again; after a total of 50 cycles the surface is flat enough for the
algorithm to conclude that it has reached a minimum.

†The Nelder-Mead simplex is completely unrelated to the simplex method in linear pro-
gramming, which is a method for solving high-dimensional linear optimization problems with
constraints.

∗However, you only need to specify a single starting point; R automatically creates a simplex
around your starting value.

book August 29, 2007

304 CHAPTER 7

reflection

reflection & expansion

contraction

high

low

beginning of step

Figure 7.4 Graphical illustration (after Press et al. (1994)) of the Nelder-Mead simplex
rules applied to a tetrahedron (a 3-dimensional simplex, used for a 3-parameter
model).

book August 29, 2007

OPTIMIZATION AND ALL THAT 305

sc
al

e

20 30 40 50 60

0.05

0.10

0.15

0.20

0.25

0.30

shape

●

start

●

end

reflection
reflect+expand
contract

Figure 7.5 Track of Nelder-Mead simplex for the Gamma model of the myxomatosis titer
data. Triangles indicating some moves are obscured by subsequent moves.

book August 29, 2007

306 CHAPTER 7

Nelder-Mead can be considerably slower than derivative-based meth-
ods, but it is less sensitive to discontinuities or noise in the likelihood surface,
since it doesn’t try to use fine-scale derivative information to navigate across
the likelihood surface.

7.2.4 Stochastic global optimization: simulated annealing

Stochastic global optimizers are a final class of optimization techniques,
even more robust than the Nelder-Mead simplex and even slower. They are
global because unlike most other optimization methods they may be able
to find the right answer even when the likelihood surface has more than
one local minimum (Figure 7.1). They are stochastic because they rely on
adding random noise to the surface as a way of avoiding being trapped at
one particular minimum.

The classic stochastic optimization algorithm is the Metropolis algo-
rithm, or simulated annealing (Kirkpatrick et al., 1983; Press et al., 1994).
The physical analogy behind simulated annealing is that gradually cooling
a molten metal or glass allows it to form a solid with few defects. Starting
with a crude (“hot”) solution to a problem and gradually refining the so-
lution allows us to find the global minimum of a surface even when it has
multiple minima.

The rules of simulated annealing are:

� pick a starting point (set of parameters) and calculate the negative
log-likelihood for those parameters;

� until your answer is good enough or you run out of time:

– A. pick a new point (set of parameters) at random (somewhere
near your old point);

– calculate the value of the negative log-likelihood there

– if the new value is better than the old negative log-likelihood,
accept it and return to A

– if it’s worse than the old value, calculate the difference in nega-
tive log-likelihood ∆(−L) = −Lnew − (−Lold). Pick a random
number between 0 and 1 and accept the new value if the random
number is less than e−∆(−L)/k, where k is a constant called the
temperature. Otherwise, keep the previous value. The higher the
temperature and the smaller ∆(−L) (i.e., the less bad the new
fit), the more likely you are to accept the new value.

book August 29, 2007

OPTIMIZATION AND ALL THAT 307

shape

20 30 40 50 60 70

0.05

0.10

0.15

0.20

0.25

0.30

sc
al

e

●●
●●
●●●

●●●
●

●●●
●●●●

●● ●
●●●●

●●●●
●

●
●

●
●●●●

● ●●
●
●

● ●●●
● ●●●● ●

●●●
●●

●
●
●

●● ●●
●●

●●●
●●

●●●
●

●● ●●
●

●
●●●●●

●●●●
●●

●●●
●●

●
●●● ●● ●

●
●

●
●●

●
●●
●●

●●
●●

● ●
●● ●
●●●

●
●

●●●●●●
● ●●●●●●

●●
●● ●●●

● ●●
●●

●● ●●●●● ●
●●●● ●●● ●
●● ●●● ●●

●● ●●
●●●
●

● ●
● ●●● ●●

●
●●

●●● ● ● ●
● ●

●
●

●
●
●
●●

●
●●●● ●● ●●● ● ●●

● ●●● ●
●
●

●●●●
●●

●
● ●●
●

●
●●

● ● ●
●

●

●
●

●●●

● ●●
●

●●
●●

●
●●

●
●●

● ●
●

●●●●●
●

●

●
●

●●●
● ●

●
●

●● ●●●● ●
●●

●●
●●

●
● ●

●
●

● ●●
●●
●●●

●

●●

● ●
● ●● ●

●

●
●
●● ●

●
●

●
●●

●
●

●
●●

●
●

●

●●
●

●

●

●●

● ●
●

● ●●
●●●

●
●

●
●
●

●
●

● ● ●
●

● ●●
●

●
●

●
●

●●

●
●●

●

●
●

●
●

●●
●

●
●

● ●
●

●

● ● ●
●●

● ●
●

●
●

●

●
●

●

●●

●

●
●

●
●●

●
●

●
●

●

●
●

●●

●●
●

●
●

● ●
●

●
●

● ●

●●
●

●●

●

●

●
● ●

●

●

●
●

●
● ●

●
● ●

●

●

●
●

● ●
●

● ●
●● ●

●●●●
●

●●●
●

●
● ●●

●
●

● ●●

●

●
●●●●

●

●
●

●●

●

● ●
●

● ●

●

●

● ●

●
●

●

●
●

●
●

●●

●
●

●●

●
●

●●

●
●

●●
●

●

●
●

●
●

●

●
● ●●

● ●●

● ●
●

● ●
●●

●
● ●●

●
●

●
●

●

●
●

● ●

●
● ●

●

●

●

●

●

●● ●

●

●

●●

●
●

● ●●
●

●

● ●
●

●

●

●
● ●

●

●●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

● ● ●
●

●
●

●

●

●
●

●

●

●

●

●●

● ●
●

●
●

●

●

●

●
●

●
●

●●
● ●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●
● ●

●●

●
●
● ●● ●●

●
● ●

● ●●●●
●

●●

●
●

●

●

●

●●

●

●●

●

● ●

●

●

●

●

●

●

●
●●

●●
●

●
● ●

●

●

●

●●

●

●

●

●
●●

●●

●
●●

●
●

●
●●

●

●
● ●

●

●
●●

●
●

● ●

●

● ●

●
●

●●

●●

●

●

●●

●●

●

●

●

●● ●● ●
●●

●

●●

●

●

●

●

●●

●
●

●

●
●

●
●●

●●
●

●

●
●

●
●

●
●

●
●

●

● ●

●

●
●

●

●

●
●

●

●

●
●●

●
●

●
●

●
●

●
●

●

●
●

●
●● ●

●
●

●●

●
●

●

●

●
●

●
●

●●●

●●●

●

●●
●

●

●
● ●

●
●

●

●

●
●

●

●

●

●
●

● ●●
●

●
●

●

●●
●

●
● ●
●

●

●●
●

●

●●

●●

●

●

●●
●●

●●

● ●
●

●●

●

● ●
● ●

●
●

●
●

●

●●
●
●
●

●
●

●
●

●
●

● ●

●
●

●● ●
●

●●●

●
● ●

●

●

●
●
● ●

●

● ●●●

●

● ●
●

●
●

●

●
●● ●

●

●●

●
●

● ●●

●

●

●●

●
●

●

●●
●

●●

●

●●
●

●

●●
●

●

●
●

●
●

●

●

●

● ●
●●

●

●

●

●
● ●

●

●

●

●

●
●

●

●● ● ●
●

●

●
●

●

●
●

●

●●●
●

●

●

●

●

●
● ●

●
●

●
●

●

●

●
● ●

●

●
●

●
●

●

●
●

●

●

●

●
●
● ●

●
●●

●

●

●●

●

●

●
●

●
●

●●

●

● ●●

● ●●
●

●
●

●

●●
●

●

●
●●

●

● ●

●
●

●● ●
●

●

●●

●

●
●

●●

●● ●

●● ●

●
●

●
●

●

●

●

●

●

●

● ●

●

●
● ●

●
●

●

●
●

●
●

●
●●

●

●
●

●
●

●

●

●●
●●

●

●

●●

●

●

●

● ●
●

●

● ●●

●●
●

●
●

● ●●●
●

●

●
●

●

●
●

●
●●

●
●

●

●
●●

●

●

●
●

●

●

● ●
●

●

●
●

●●
●

●
●

●
●●

● ●●●

●●●

●
●

●

●
●

●

●

●
● ●

●

●
●

●

● ●

● ●

●

●
●

●

●●

●
●

●●
●

●

●

●

●●

●●●

●

●
●

●

●

●

●
●●

●

●

●●●

●

●
●●●

●

●

●

●●

●

●

● ●●
●

●
●

●

●

●

●
●

● ●

●
●

●
●

● ●
●

●

●●

●

●
●

●

●
● ●

●

●● ●

●

●
●●

●●

●

●
●

●
●

● ●

●

●

●

●

●●
● ●

●
● ●

●●
●

●
●
●● ●

●

●

●● ● ●

●●

●

●
● ●

●
●

●

●

●

●
●

●
●

●
●

●

●

● ●

●
●

●

●●
●

● ●
●

●

●

●

● ●

●

●

●

●
●

●

●

●
●●

●
●●
● ●

●
●

●●

●
●

●

●
●

●
●●

●
●

●
●

●●
●

●
● ●●

●

●

●

●
●

●
● ●

●
●

● ●
●

●
●
●

●●
●

●●
●

●●●

●

●
●

●
●

●

●

●

●
●

●

●●
●

●
●

●
●●● ●

●
●●

● ●

●●
●

●
●
●●

●●
●

●

●

●
●●

●

●
●

●●
●●

●

●
●

●●

●

●●
●●

●
●

●

●

● ●
●

●

●
●

●

●
●
●

●

●

●
●

●

●●

●●
●●●

●

●●● ●● ●● ●●

●
●

●

●●

●

●

●
●●

●

●

●

●

●

●
●●

● ●
●

●

●
●

●●
●

●

●
●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●●

●
●

● ●
●

●●
●

●
●

●
●●

●

●●

●

●
●●

●

●

● ●

●

●

●

●

●
●●

●
●

●●

●

●
●

●

●

●

●
●
●

●●
●
●

●
●

●

●
●

●

●
●

●
● ●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●
●

● ●

● ●

● ●●●●

●

●
●

●
●

●

● ●
●

●●

●

●
●

●
●

●●

●
●

●

●

●●

●

● ●

●●

●
●

●
●●

●●
●

●

● ●
● ●

●
●

●
●●

●

● ●

●

●
●●

●
●

●

●

●
●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●●●

●
●

●

● ●

●

●

●●● ●
● ●

●
●

● ●

●
●

●

● ●

●

●●
●●

●

●●●

●
●

●●

●

●

●

●
●●●

●

●
●●

●

●●
●●

●
●

●

●●
●
●

●
●

●
●

●

●

●

●●
● ● ●
●

●

●
● ●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

● ●● ●

●

●

● ●

●

●● ●
●

● ●
●

●

●

●
●

●

●●

●

●

● ● ●
● ●

●

●
●

●

●●

●

●
●●

●

●
●●

●

●

●

●●

●
●

●

●
●

●

●

●

●
●
●

●

●

●
●

●

●
●

●

●

●●
●●

●

●

●

●

●

● ●
●

●

● ●

●● ●

● ●

●

●●● ●

●

●

●●

●●

●
●

●

●
●

●
●

●●

●●
●

●

●●

●

●
●●

●
●

● ●
●

●
● ●

●

●●

●

●
●

●

●

●
● ●●
●

●

●

●
●

● ●

●
●

●

●

●

●●● ●
●

●

● ●
● ● ●

●
●

●

●

●●

● ●
● ●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●● ●
● ● ●

●● ●●

●●●
●

●

●● ●

●
● ●

●
●

●●

●
●●● ●●

●

●●
●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●
●
●

●
●

●
●

●●
●●●

●●

●
●

●
●

●

●

●●

●
● ●

●

●

●

●
●

●
●

●
●

●

●
● ●

●
●

●

●

●
●

●
●●

●
●

●●

●
●

●

●
● ●

●●●
●

●
●

●

●

●
●

●
●

●

●

●● ● ●

●●

●

●
● ●

● ●
●

●
●

●

●
● ●

●
●

●●
●

●

● ●
●

●
●

●
●●

●

●
●

●
●

●
●

●
●

●●
●

●

●

●
●

●
● ●●

●

●
●

●●

●

●

●

●

●

●●

●

●
●

● ●●
●●

●●
●

●

●

●

●
●

●
●

●●
●

● ●
●●●

●

●
●

●●

●●

● ● ●

●

●
●

●

●

●
●

● ●

●
●

●

●●

●

●

●
●

●
●

●
● ●

●●

●

●

●
●●

●
●

● ●●
●

● ●

●●●

●
●

●

●

●

●
●

●

●

●

●
●● ●

●

●
●

●
●●

●

●●
●

●
●●

●
●●

●

●

●

●● ●
●

●

●

●

●

●
● ●

●

●

●
●

●

● ●

●
● ●● ●

●

●

●

●

●
● ●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●
● ●

●
●

●

●

●

●

●
●

●
● ●

● ●

●

●

●

●

●
●

●●

●●●

●

●

● ●

●
●

●

●

●

●●

●

● ●

●
●

● ●
●
● ●

●

●

●
●

●
●

●

●

●● ●

●

●
●

● ●

●

●
● ●

●

●

●

●
●

●

●

● ●●

●
●
● ●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●●
● ●

●
●●

●

● ●●

●

●
●●

●●

●

1

100

150 300

1000

1500

2000

2500

Figure 7.6 Track of Metropolis-Szymura-Barton evaluations. The MSB algorithm starts
at (20,0.05) (step 1), and moves quickly up to the central valley, but then
wanders aimlessly back and forth along the valley.

In mathematical terms, the acceptance rule is

Prob(accept) =

{
e−

∆(−L)
k if ∆(−L) > 0

1 if ∆(−L) < 0.
(7.2.2)

– Return to A and repeat.

� Periodically (e.g., every 100 steps) lower the value of k to make it
harder and harder to accept bad moves.

One variant of simulated annealing is available in R as the SANN
method for optim or mle2.

Another variant of the Metropolis algorithm (Metropolis-Szymura-
Barton, MSB, metropSB in emdbook: Szymura and Barton, 1986)) varies
the size of the change in parameters (the scale of the candidate distribu-
tion or jump size) rather than the temperature, and changes the jump size
adaptively rather than according to a fixed schedule. Every successful jump

book August 29, 2007

308 CHAPTER 7

increases the jump size, while every unsuccessful jump decreases the jump
size. This makes the algorithm good at exploring lots of local minima (ev-
ery time it gets into a valley, it starts trying to get out) but really bad at
refining estimates (it has a hard time actually getting all the way to the
bottom of a valley).

To run MSB on the myxomatosis data:

> MSBfit = metropSB(fn = gammaNLL2, start = c(20, 0.05),

+ nmax = 2500)

Figure 7.6 shows a snapshot of where the MSB algorithm goes on our
now-familiar likelihood surface for the myxomatosis data, with unsuccessful
jumps marked in gray and successful jumps marked in black. The MSB
algorithm quickly moves “downhill” from its starting point to the central
valley, but then drifts aimlessly back and forth along the central valley. It
does find a point close to the minimum. After 376 steps, it finds a minimum
of 37.66717, equal for all practical purposes to the Nelder-Mead simplex
value of 37.66714 — but Nelder-Mead took only 70 function evaluations to
get there. Since MSB increases its jump scale when it is successful, and since
it is willing to take small uphill steps, it doesn’t stay near the minimum.
While it always remembers the best point it has found so far, it will wander
indefinitely looking for a better solution. In this case it didn’t find anything
better by the time I stopped it at 2,500 iterations.

Figure 7.7 shows some statistics on MSB algorithm performance as
the number of iterations increases. The top two panels show the values of
the two parameters (shape and scale), and the best-fit parameters so far.
Both of the parameters adjust quickly in the first 500 iterations, but from
there they wander around without improving the fit. The third panel shows
a scaled version of the jump-width parameter, which increases initially and
then varies around 1.0, and the running average of the fraction of jumps
accepted, which rapidly converges to a value around 0.5. The fourth and
final panel shows the achieved value of the negative log-likelihood: almost all
of the gains occur early. The MSB algorithm is inefficient for this problem,
but it can be a lifesaver when your likelihood surface is complex and you
have the patience to use brute force.

There are many other stochastic global optimization algorithms. For
example, Press et al. (1994) suggest a hybrid of simulated annealing and the
Nelder-Mead simplex where the vertices of the simplex are perturbed ran-
domly but with decreasing amplitudes of noise over time. Other researchers
have suggested using a stochastic algorithm to find the the right peak and
finishing with a local algorithm (Nelder-Mead or derivative-based) to get a

book August 29, 2007

OPTIMIZATION AND ALL THAT 309

20

30

40

50

60

70 shape

0.05

0.10

0.15

0.20

0.25scale

Iterations

0 1000 2000

0.0

0.5

1.0

relative
jump size

fraction
accepted

Iterations

0 1000 2000

negative
log likelihood

Figure 7.7 History of MSB evaluations: parameters (shape and scale), relative jump
size and fraction of jumps accepted, and current and minimum negative log-
likelihood. The minimum negative log-likelihood is achieved after 376 steps;
thereafter the algorithm remembers its best previous achievement (horizontal
dotted line), but fails to improve on it.

book August 29, 2007

310 CHAPTER 7

more precise answer. Various adaptive stochastic algorithms (e.g. Ingber,
1996) attempt to “tune” either the temperature or the jump size and dis-
tribution for better results. Methods like genetic algorithms or differential
evolution use many points moving around the likelihood surface in parallel,
rather than a single point as in simulated annealing. If you need stochastic
global optimization, you will probably need a lot of computer time (many
function evaluations are required) and you will almost certainly need to
tune the parameters of whatever algorithm you choose rather than using
the default values.

7.3 MARKOV CHAIN MONTE CARLO

Bayesians are normally interested in finding the means of the posterior dis-
tribution rather than the maximum likelihood value (or analogously the
mode of the posterior distribution). Previous chapters suggested that you
can use WinBUGS to compute posterior distributions, but gave few de-
tails. Markov chain Monte Carlo (MCMC) is an extremely clever, general
approach that uses stochastic jumps in parameter space to find the distri-
bution. MCMC is similar to simulated annealing in the way it picks new
parameter values sequentially but randomly. The main difference is that
MCMC’s goal is not to find the best parameter combination (mode/MLE)
but to sample from the posterior distribution.

Like simulated annealing, MCMC has many variants that use different
rules for picking new parameter values (i.e., different kinds of candidate dis-
tributions) and for deciding whether accept the new choice or not. However,
all variants of MCMC must satisfy the fundamental rule that the ratio of
successful jump probabilities (Pjump×Paccept) is proportional to the ratio
of the posterior probabilities:

Post(A)
Post(B)

=
P (jump B → A)P (accept A|B)
P (jump A → B)P (accept B|A)

(7.3.1)

If we follow this rule (and if several other technical criteria are satisfied∗),
in the long run the chain will spend a lot of time occupying areas with high
probability and will visit (but not spend much time in) in areas with low
probability, so that the long-term distribution of the sampled points will
match the posterior probability distribution.

∗The chain must be irreducible (it must be possible eventually to move from any point in
parameter space to any other) and aperiodic (it should be impossible for it to get stuck in a loop).

book August 29, 2007

OPTIMIZATION AND ALL THAT 311

7.3.1 Metropolis-Hastings

The Metropolis-Hastings MCMC updating rule is very similar to the sim-
ulated annealing rules discussed above, except that the temperature does
not decrease over time to make the algorithm increasingly picky about ac-
cepting uphill moves. The Metropolis updating rule defined above for sim-
ulated annealing (p. 304) can use any symmetric candidate distribution
(P (jump B → A) = P (jump A → B). For example, the MSB algorithm
(p. 306) picks values in a uniform distribution around the current set of
parameters. The critical part of the Metropolis algorithm is the acceptance
rule, which is the simulated annealing rule (eq. 7.2.2) with the temperature
parameter k set to 1 and the posterior probability substituted for the like-
lihood†. The Metropolis-Hastings rule generalizes the Metropolis by multi-
plying the acceptance probability by the ratio of the jump probabilities in
each direction, P (jump B → A)/P (jump A → B):

P (accept B|A) = min
(

1,
Post(B)
Post(A)

· P (jump B → A)
P (jump A → B)

)
(7.3.2)

This equation reduces to the Metropolis rule for symmetric distributions but
allows for asymmetric candidate distributions, which is particularly useful
if you need to adjust candidate distributions so that a parameter does not
become negative.

As in simulated annealing, if a new set of parameters has a higher
posterior probability than the previous parameters (weighted by the asym-
metry in the probability of moving between the parameter sets), then the
ratio in (7.3.2) is greater than 1 and we accept the new parameters with
probability 1. If the new set has a lower posterior probability (weighted by
jump probabilities), we accept them with a probability equal to the weighted
ratio. If you work this out for P (accept A|B) in a similar way, you’ll see
that the rule fits the basic MCMC criterion (7.3.1). In fact, in the MSB
example above the acceptance probability was set equal to the ratio of the
likelihoods of the new and old parameter values (the scale parameter in
optimMSB was left at its default value of 1), so that analysis also satisfied
the Metropolis-Hasting rule (7.3.2). Since it used negative log-likelihoods
rather than incorporating an explicit prior to compute posterior probabili-
ties, it assumed a completely flat prior (which can be dangerous, leading to
unstable estimates or slow convergence, but seems to have been OK in this
case).

The MCMCpack package provides another way to run a Metropolis-

†In the simulated annealing rule we exponentiated −k times the log-likelihood difference,
which gave us the likelihood ratio raised to the power −k; if we set k = 1 then we have Lold/Lnew,
which corresponds to Post(A)/Post(B).

book August 29, 2007

312 CHAPTER 7

Hastings chain in R. Given a function that computes the log posterior den-
sity (if the prior is completely flat, this is just the (positive) log-likelihood
function), the MCMCmetrop1R function first uses optim to find the posterior
mode, then uses the approximate variance-covariance matrix at the mode to
scale a multivariate normal candidate distribution, then runs a Metropolis-
Hastings chain based on this candidate distribution.

For example:

> gammaNLL2B = function(p) {

+ sum(dgamma(myxdat$titer, shape = p[1], scale = p[2],

+ log = TRUE))

+ }

> m3 <- MCMCmetrop1R(gammaNLL2B, theta.init = c(shape = 20,

+ scale = 0.05), thin = 30, mcmc = 30000, optim.lower = rep(0.004,

+ 2), optim.method = "L-BFGS-B", tune = 3)

@@@
The Metropolis acceptance rate was 0.10816
@@@

> colnames(m3) = c("shape", "scale")

When I initially ran this analysis with the default value of tune=1
and used plot(m3) to view the results, I saw that the chain took long ex-
cursions to extreme values. Inspecting the contour plot of the surface, and
slices (?calcslice from the emdbook package) didn’t suggest that there was
another minimum that the chain was visiting during these excursions. The
authors of the package suggested that MCMCmetrop1R was having trouble
because of the banana-shape of the posterior density (Figure 7.6), and that
increasing the tune parameter, which increases the scale of the candidate
distribution, would help∗. Setting tune=3 seems to be enough to make the

∗They specifically suggested:

i) set the tuning parameter much larger than normal so that the acceptance rate is actu-
ally below the usual 20-25% rule of thumb. This will fatten and lengthen the proposal
distribution so that one can jump from one tail to the other.

ii) forego the proposal distribution based on the large sample var-cov matrix. Set the V

parameter in MCMCmetrop1R to something that will work reasonably well over the entire
parameter space.

iii) use an MCMC algorithm other than the random walk metropolis algorithm. You’ll need
to use something other than MCMCmetrop1R to do this but this option will be the most
computationally efficient.

book August 29, 2007

OPTIMIZATION AND ALL THAT 313

chains behave better. (Increasing tune still more would make the Metropo-
lis sampling less efficient.) Another option, which might take more thinking,
would be to transform the parameters to make the likelihood surface closer
to quadratic, which would make a multivariate Normal candidate distribu-
tion a better fit. Since the likelihood contours approximately follow lines
of constant mean (shape · scale: Figure 7.5), changing the parameterization
from {shape, scale} to {mean, variance} makes the surface approximately
quadratic and should make MCMCmetrop1R behave better.

The colnames command sets the parameter names, which are helpful
when looking at summary(m3) or plot(m3) since MCMCmetrop1R doesn’t set
the names itself.

7.3.2 Burn-in and convergence

Metropolis-Hastings updating, and any other MCMC rule that satisfies
(7.3.1), is guaranteed to reach the posterior distribution eventually, but
usually we have to discard the iterations from a burn-in period before the
distribution converges to the posterior distribution. For example, during
the first 300 steps in the MSB optimization above (Figures 7.6 and 7.7) the
algorithm approaches the minimum from its starting points, and bounces
around the minimum thereafter. Treating this analysis as an MCMC, we
would drop the first 300 steps (or 500 to be safe) and focus on the rest of
the data set.

Assessing convergence is simple for such a simple model but can be
difficult in general. Bayesian analysts have developed many convergence
diagnostics, but you probably only need to know about a few.

The Raftery-Lewis (RL) diagnostic (Raftery and Lewis, 1996, raftery.diag
in the coda package) takes a pilot run of an MCMC and estimates, based on
the variability in the parameters, how long the burn-in period should be and
how many samples you need to estimate the parameters to within a certain
accuracy. The parameters for the Raftery-Lewis diagnostic are the quantile
that you want to estimate (2.5% by default, i.e. the standard two-sided
tails of the posterior distribution), the accuracy with which you want to
estimate the quantile (±0.005 by default), and the desired probability that
the quantile is in the desired range (default 0.95). For the MSB/myxomato-
sis example above, running the Raftery-Lewis diagnostic with the default
accuracy of r = 0.005 said the pilot run of 2500 was not even long enough to
estimate how long the chain should be, so I relaxed the accuracy to r = 0.01:

book August 29, 2007

314 CHAPTER 7

Quantile (q) = 0.025
Accuracy (r) = +/- 0.01
Probability (s) = 0.95

Burn-in Total Lower bound Dependence
(M) (N) (Nmin) factor (I)

p1 44 10100 937 10.8
p2 211 29839 937 31.8

The first column gives the estimated burn-in time for each parameter —
take the maximum of these values as your burn-in time. The next two
columns give the required total sample size and the sample size that would
be required if the chain were uncorrelated; the final column gives the depen-
dence factor, which essentially says how many steps the chain takes until
it has “forgotten” about its previous value. In this case, RL says that we
would need to run the chain for about 30,000 samples to get a sufficiently
good estimate of the quantiles for the scale parameter, but that (because
the dependency factor is close to 30) we could take every 30th step in the
chain and not lose any important information.

Another way of assessing convergence is to run multiple chains that
start from widely separated (overdispersed) points and see whether they
have run long enough to overlap (which is a good indication that they have
converged). The starting points should be far enough apart to give a good
sample of the surface, but should be sufficiently reasonable to give finite
posterior probabilities. The Gelman-Rubin (G-R, gelman.diag in the coda
package: Gelman et al., 1996) diagnostic takes this approach. G-R provides a
potential scale reduction factor (PRSF), estimating how much the between-
chain variance could be reduced if the chains were run for longer. The closer
to 1 the PRSFs are, the better. The rule of thumb is that they should be
less than 1.2.

Running a second chain (m2) for the myxomatosis data starting from
(shape=70, scale=0.2) instead of (shape=20, scale=0.05) and running G-R
diagnostics on both chains gives:

> gelman.diag(mcmc.list(m1, m2))

Potential scale reduction factors:

Point est. 97.5% quantile
p1 1.15 1.48
p2 1.31 2.36

book August 29, 2007

OPTIMIZATION AND ALL THAT 315

Multivariate psrf

1.28

The upper confidence limit for the PRSF for parameter 1 (shape),
and the estimated value for parameter 2 (scale), are both greater than 1.2.
Apparently we need to run the chains longer.

7.3.3 Gibbs sampling

The major alternative to Metropolis-Hastings sampling is Gibbs sampling
(or the Gibbs sampler), which works for models where we can figure out
the posterior probability distribution (and pick a random sample from it),
conditional on the values of all the other parameters in the model. For
example, to estimate the mean and variance of normally distributed data we
can cycle back and forth between picking a random value from the posterior
distribution for the mean, assuming a particular value of the variance, and
picking a random value from the posterior distribution for the variance,
assuming a particular value of the mean. The Gibbs sampler obeys the
MCMC criterion (7.3.1) because the candidate distribution is the posterior
distribution, so the jump probability (P (jump B → A)) is equal to the
posterior distribution of A. Therefore, the Gibbs sampler can always accept
the jump Paccept = 1 and still satisfy

Post(A)
Post(B)

=
P (jump B → A)
P (jump A → B)

. (7.3.3)

Gibbs sampling works particularly well for hierarchical models (Chap-
ter 10). Whether we can do Gibbs sampling or not, we can do block sam-
pling by breaking the posterior probability up into a series of conditional
probabilities. A complicated posterior distribution Post(p1, p2, . . . , pn|y) =
L(y|p1, p2, . . . , pn)Prior(p1, p2, . . . , pn), which is hard to compute in general,
can be broken down in terms of the marginal posterior distribution of a
single parameter (p1 in this case), assuming all the other parameters are
known:

Post(p1|y, p2, . . . , pn) = L(y|p1, p2, . . . , pn)·P (p1|p2, . . . , pn)·Prior(p1, p2, . . . , pn)
(7.3.4)

This decomposition allows us to sample parameters one at a time, either
by Gibbs sampling or by Metropolis-Hastings. The advantage is that the
posterior distribution of a single parameter, conditional on the rest, may be
simple enough so that we can sample directly from the posterior.

book August 29, 2007

316 CHAPTER 7

BUGS (Bayesian inference Using Gibbs Sampling) is an amazing
piece of software that takes a description of a statistical model and automat-
ically generates a Gibbs sampling algorithm∗. WinBUGS is the Windows
version, and R2WinBUGS is the R interface for WinBUGS.

Some BUGS models have already appeared in Chapter 6. BUGS’s
syntax closely resembles R’s, with the following important differences:

� BUGS is not vectorized. Definitions of vectors of probabilities must
be specified using a for loop.

� R uses the = symbol to assign values. BUGS uses <- (a stylized left-
arrow: e.g. a <- b+1 instead of a=b+1).

� BUGS uses a tilde (~) to mean “is distributed as”. For example, to
say that x comes from a standard normal distribution (with mean 0
and variance 1: x ∼ N(0, 1), tell BUGS x~dnorm(0,1)).

� While many statistical distributions have the same names as in R(e.g.
normal=dnorm, gamma=dgamma), watch out! BUGS often uses a dif-
ferent parameterization. For example, where R uses dnorm(x,mean,sd),
BUGS uses x~dnorm(mean,prec) where prec is the precision — the
reciprocal of the variance. Also note that x is included in the dnorm
in R, whereas in BUGS it is on the left side of the ~ operator. Read
the BUGS documentation (included in WinBUGS) to make sure you
understand BUGS’s definitions.

The model definition for BUGS should include the priors as well as
the likelihoods. Here’s a very simple input file, which defines a model for
the posterior of the myxomatosis titer data:

model {
for (i in 1:n) {

titer[i] ~ dgamma(shape,rate)
}
shape ~ dunif(0,150)
rate ~ dunif(0,20)

}

∗I will focus on a text file description, and on the R interface to WinBUGS implemented in
the R2WinBUGS package, but many different variants of automatic Gibbs samplers are springing
up. These vary in interface, degree of polish and supported platforms. (1) WinBUGS runs on
Windows, under WINE on Linux, and maybe soon on Intel Macs; models can be defined either
graphically or as text files; R2WinBUGS is the R interface. (2) OpenBUGS (http://mathstat.
helsinki.fi/openbugs/) is an new, open version of WinBUGS that runs on Windows and Linux
(LinBUGS). OpenBUGS has an R interface, BRugs, but so far it only runs on Windows. (3)
JAGS is an alternative version that runs on Linux and MacOS (but may be challenging to set up)
and has an R interface.

book August 29, 2007

OPTIMIZATION AND ALL THAT 317

After making sure that this file is present in your working directory
(use Wordpad or Notepad to edit it; if you use Word, be sure to save the
file as text), you can run this model in BUGS by way of R2WinBUGS as
follows:

> library(R2WinBUGS)

> titer <- myxdat$titer

> n <- length(titer)

> inits <- list(list(shape = 100, rate = 3), list(shape = 20,

+ rate = 10))

> testmyxo.bugs <- bugs(data = list("titer", "n"),

+ inits, parameters.to.save = c("shape", "rate"),

+ model.file = "myxogamma.bug", n.chains = length(inits),

+ n.iter = 5000)

Printing out the value of testmyxo.bugs gives a summary including
the mean, standard deviation, quantiles, and the Gelman-Rubin statistic
(Rhat) for each variable. It also gives a DIC estimate for the model. By
default this summary only uses a precision of 0.1, but you can use the digits
argument to get more precision, e.g. print(testmyxo.bugs,digits=2).

> testmyxo.bugs

Inference for Bugs model at "myxogamma.bug", fit using winbugs,
2 chains, each with 5000 iterations (first 2500 discarded), n.thin = 5
n.sims = 1000 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
shape 54.6 16.9 28.5 43.0 51.7 63.9 92.8 1.1 41
rate 7.9 2.5 4.1 6.2 7.5 9.3 13.5 1.1 42
deviance 77.7 2.3 75.4 76.0 76.9 78.7 83.8 1.1 18

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

pD = 2.3 and DIC = 80.0 (using the rule, pD = Dbar-Dhat)
DIC is an estimate of expected predictive error (lower deviance is better).

The standard diagnostic plot for a WinBUGS run (plot.bugs(testmyxo.bugs))
shows the mean and credible intervals for each variable in each chain, as well
as the Gelman-Rubin statistics for each variable.

book August 29, 2007

318 CHAPTER 7

0 500 1000 1500 2000 2500

20
60

10
0

Iterations

Trace of shape

20 40 60 80 100 120

0.
00

0
0.

01
5

N = 500 Bandwidth = 4.164

Density of shape

0 500 1000 1500 2000 2500

4
8

12
16

Iterations

Trace of rate

5 10 15

0.
00

0.
10

N = 500 Bandwidth = 0.6253

Density of rate

0 500 1000 1500 2000 2500

76
82

88

Iterations

Trace of deviance

75 80 85 90

0.
00

0.
15

N = 500 Bandwidth = 0.5494

Density of deviance

Figure 7.8 WinBUGS output plot: default coda plot, showing trace plots (left) and density
plots (right).

You can get slightly different information by turning the result into a
coda object:

> testmyxo.coda <- as.mcmc(testmyxo.bugs)

summary(testmyxo.coda) gives similar information as printing testmyxo.bugs.
HPDinterval gives the credible (highest posterior density) interval for each
variable computed from MCMC output.

Plotting testmyxo.coda gives trace plots (similar to Figure 7.7) and
density plots of the posterior density (Figure 7.8). Other diagnostic plots
are available: see especially ?densityplot.mcmc.

This information should be enough to get you started using Win-
BUGS. A growing number of papers — some in ecology, but largely focused
in conservation and management (especially in fisheries) provide example

book August 29, 2007

OPTIMIZATION AND ALL THAT 319

models for specific systems ∗ (Millar and Meyer, 2000; Jonsen et al., 2003;
Morales et al., 2004; McCarthy and Parris, 2004; Clarke et al., 2006).

In summary, the basic procedure for fitting a model via MCMC (using
MCMCpack, WinBUGS, or rolling your own) is: (1) design and code your
model; (2) enter the data; (3) pick priors for parameters; (4) initialize the
parameter values for several chains (overdispersed, or by a random draw
from priors); (5) run the chains for “a long time” (R2WinBUGS’s default
is 2000 steps); (6) check convergence; (7) run for longer if necessary; (8)
discard burn-in and thin the chains; (8) compute means, 95% intervals,
correlations among parameters, and other values of interest.

7.4 FITTING CHALLENGES

Now that we’ve reviewed the basic techniques for maximum-likelihood and
Bayesian estimation, I’ll go over some of the special characteristics of prob-
lems that make fitting harder.

7.4.1 High dimensional/many-parameter models

Finding the MLE for a 1-parameter model means finding the minimum of the
likelihood curve; finding the MLE for a 2-parameter model means finding the
minimum of a 2D surface; finding the MLE for models with more parameters
means finding the minimum on a multidimensional “surface”. Models with
more than a few parameters suffer from the curse of dimensionality : the
number of parameter combinations, or derivatives, or directions you have to
consider increases as a power law of the sampling resolution. For example, if
you want find the MLE for a five-parameter model (a pretty simple model)
by direct search and you want to subdivide the range of each parameter
into 10 intervals (which is quite coarse), you’re already talking about 105

parameter combinations. Combine this with function evaluations that take
more than a fraction of a second and you’re into the better part of a day to
do a single optimization run. Direct search is usually just not practical for
models with more than two or three parameters.

If you need to visualize a high-dimensional likelihood surface (e.g. ex-
amining the region around a putative MLE to see if the algorithm has found
a reasonable answer), you’ll probably need to look at 2D slices (varying two
parameters at a time over reasonable ranges, calculating the objective func-
tion for each combination of values while holding all the other parameters
constant) or profiles (varying two parameters at a time over reasonable

∗In a few years this list of citations will probably be too long to include!

book August 29, 2007

320 CHAPTER 7

ranges and optimizing over all the other parameters for each combination of
values). You are more likely to have to fall back on the information matrix-
based approach described in the previous chapter for finding approximate
variances and covariances (or correlations) of the parameter estimates; this
approach is more approximate and gives you less information than fitting
profiles, but extends very simply to any number of parameters.

MCMC fitting adapts well to large models. You can easily get uni-
variate (using HPDinterval from coda for credible intervals or summary for
quantiles) and bivariate confidence intervals (using HPDregionplot from
emdbook).

7.4.2 Slow function evaluations

Since they require many function evaluations, high-dimensional problems
also increase the importance of speed in the likelihood calculations. Many of
the models you’ll deal with take only microseconds to calculate a likelihood,
so running tens of thousands of function evaluations can still be relatively
quick. However, fitting a high-dimensional model using simulated annealing
or other stochastic optimization approaches, or finding confidence limits for
such models, can sometimes require millions of evaluations and hours or
days to fit. In other cases, you might have to run a complicated population
dynamics model for each set of parameters and so each likelihood function
evaluation could take minutes or longer (Moorcroft et al., 2006).

Some possible solutions or partial solutions to this problem:

� Use more efficient optimization algorithms, such as derivative-based
algorithms instead of Nelder-Mead, if you can.

� Derive an analytical expression for the derivatives and write a function
to compute it. optim and mle2 can use this function (via the gr
argument) instead of computing finite differences.

� Rewrite the code that computes the objective function more efficiently
in R. Vectorized operations are almost always faster than for loops.
For example, filling a 1000 × 2000 matrix with Normally distributed
values one at a time takes 30 seconds, while picking a million values
and then reformatting them into a matrix takes only 0.78 seconds.
Calculating the column sums of the matrix by looping over rows and
columns takes 20.8 seconds; using apply(m,1,sum) takes 0.14 seconds;
and using colSums(m) takes 0.006 seconds.

book August 29, 2007

OPTIMIZATION AND ALL THAT 321

� If you can program in C or FORTRAN, or have a friend who can, write
your objective function in one of these faster, lower-level languages and
link it to R (see the R Extensions Manual for details).

� For really big problems, you may need to use tools beyond R. One
such tool is AD Model Builder, which uses automatic differentiation
— a very sophisticated algorithm for computing derivatives efficiently
— which can speed up computation a lot (R has a very simple form
of automatic differentiation built into its deriv function).

� Compromise by allowing a lower precision for your fits, increasing
the reltol parameter in optim. Do you really need to know the
parameters within a factor of 10−8, or would 10−3 do, especially if you
know your confidence limits are likely to be much larger? (Be careful:
increasing the tolerance in this way may also allow algorithms to stop
prematurely at a flat spot on the way to the true minimum.)

� Find a faster computer, or wait longer for the answers.

7.4.3 Discontinuities and thresholds

Models with sudden changes in the log-likelihood (discontinuities) or deriva-
tives of the log-likelihood, or perfectly flat regions, can cause real trouble
for general-purpose optimization algorithms∗. Discontinuities in the log-
likelihood or its derivative can make derivative-based extrapolations wildly
wrong. Almost-flat regions can make most methods (including Nelder-
Mead) falsely conclude that they’ve reached a minimum.

Flat regions are often the result of threshold models, which in turn
can be motivated on simple phenomenological grounds or as the result (e.g.)
of some optimal-foraging theories (Chapter 3). Figure 7.9 shows simulated
“data” and a likelihood curve/slice for a very simple threshold model. The
likelihood profile for the threshold model has discontinuities at the x-value
of each data point. These breaks occur because the likelihood only changes
when the threshold parameter is changed from just below an observed value
of x to just above it; adjusting the threshold parameter anywhere in the
range between two observed x values has no effect on the likelihood.

The logistic profile, in addition to being smooth rather than choppy,
is lower (representing a better fit to the data) for extreme values because
the logistic function can become essentially linear for intermediate values,

∗Specialized algorithms, such as those included in the segmented package on CRAN, can
handle certain classes of piecewise models (Muggeo, 2003).

book August 29, 2007

322 CHAPTER 7

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

y

1

2

3

4

5

6

0 1 2 3 4 5

10
20
30
40
50

x

N
eg

at
iv

e
lo

g
lik

el
ih

oo
d

threshold

logistic

Figure 7.9 Threshold and logistic models. Top: data, showing the data (generated from a
threshold model) and the best threshold and logistic fits to the data. Bottom:
likelihood profiles.

book August 29, 2007

OPTIMIZATION AND ALL THAT 323

while the threshold function is flat. For optimum values of the threshold pa-
rameter, the logistic and threshold models give essentially the same answer.
Since the logistic is slightly more flexible (having an additional parameter
governing steepness), it gives marginally better fits — but these would not
be significantly better according to the likelihood ratio test or any other
model selection criterion. Both profiles become flat for extreme values (the
fit doesn’t get any worse for ridiculous values of the threshold parameter),
which could cause trouble with an optimization method that is looking for
flat regions of the profile.

Some ways to deal with thresholds:

� If you know a priori where the threshold is, you can fit different models
on either side of the threshold.

� If the threshold occurs for a single parameter, you can compute a
log-likelihood profile for that parameter. For example, in Figure 7.9
only the parameter for the location of the threshold causes a problem,
while the parameters for the values before and after the threshold
are well-behaved. This procedure reduces to direct search for the
difficult parameter while still searching automatically for all the other
parameters (Barrowman and Myers, 2000). This kind of profiling is
also useful when a parameter needs to be restricted to integer values
or is otherwise difficult to fit by a continuous optimization routine.

� You can adjust the model, replacing the sharp threshold by some
smoother behavior. Figure 7.9 shows the likelihood profile of a lo-
gistic model fitted to the same data. Many fitting procedures for
threshold models replace the sharp threshold with a smooth transi-
tion that preserves most of the behavior of the model but alleviates
fitting difficulties (Bacon and Watts, 1974; Barrowman and Myers,
2000).

7.4.4 Multiple minima

Even if a function is smooth, it may have multiple minima (e.g. Figure 7.1):
alternative sets of parameters that each represent better fits to the data
than any nearby parameters. Multiple minima may occur in either smooth
or jagged likelihood surfaces.

Multiple minima are a challenging problem, and are particularly scary
because they’re not always obvious — especially in high-dimensional prob-
lems. Figure 7.10 shows a slice through parameter space connecting two

book August 29, 2007

324 CHAPTER 7

0.0 0.2 0.4 0.6 0.8 1.0

50

100

150

200

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

● ●

●

●

●

● ●

●

●●

●

●

size

ki
lle

d

●

●

●

● ●

●

●

●

●

size

ki
lle

d

Figure 7.10 Likelihood slice connecting two negative log-likelihood minima for the modi-
fied logistic model of Vonesh and Bolker (2005). The x axis is on an arbitrary
scale where x = 0 and x = 1 represent the locations of the two minima. Sub-
plots show the fits of the curves to the frog predation data for the parameters
at each minimum; the right-hand minimum is a slightly better fit (−L = 11.77
(right) vs. 12.15 (left)). The horizontal solid and dashed lines show the mini-
mum negative log-likelihood and the 95% confidence cutoff (−L+χ2

1(0.95)/2).
The 95% confidence region includes small regions around both x = 0 and
x = 1.

book August 29, 2007

OPTIMIZATION AND ALL THAT 325

minima that occur in the negative log-likelihood surface of the modified
logistic function that Vonesh and Bolker (2005) used to fit data on tad-
pole predation as a function of size (the function calcslice in the emdbook
package will compute such a slice). Such a pattern strongly suggests, al-
though it does not guarantee, that the two points really are local minima.
When we wrote the paper, we were aware only of the left-hand minimum,
which seemed to fit the data reasonably well. In preparing this chapter, I
re-analyzed the data using BFGS instead of Nelder-Mead optimization and
discovered the right-hand fit, which is actually slightly better (−L = 11.77
compared to 12.15 for the original fit). Since they use different rules, the
Nelder-Mead and BFGS algorithms found their way to different minima de-
spite starting at the same point. This is alarming. While the log-likelihood
difference (0.38) is not large enough to reject the first set of parameters, and
while the fit corresponding to those parameters still seems more biologically
plausible (a gradual increase in predation risk followed by a slightly slower
decrease, rather than a very sharp increase and gradual decrease), we had no
idea that the second minimum existed. Etienne et al. (2006b) pointed out a
similar issue affecting a paper by Latimer et al. (2005) about diversification
patterns in the South African fynbos: some estimates of extremely high
speciation rates turned out to be spurious minima in the model’s likelihood
surface (although the basic conclusions of the original paper still held).

No algorithm can promise to deal with the pathological case of a very
narrow, isolated minimum as in Figure 7.1. To guard against multiple-
minimum problems, try to fit your model with several different reasonable
starting points, and check to make sure that your answers are reasonable.

If your results suggest that you have multiple minima — that is, you
get different answers from different starting points — check the following:

� Did both fits really converge properly? The fits returned by mle2
from the bbmle package will warn you if the optimization did not con-
verge; for optim results you need to check the $convergence term
of results (it will be zero if there were no problems). Try restarting
the optimizations from both of the points where the optimizations
ended up, possibly resetting parscale to the absolute value of the
fitted parameters. (If O1 is your first optim fit, run the second fit
with control=list(parscale=abs(O1$par)). If O1 is an mle2 fit,
use control=list(parscale=abs(coef(O1))).) Try different opti-
mization methods (BFGS if you used Nelder-Mead, and vice versa).
Calculate slices or profiles around the optima to make sure they really
look like local minima.

� Use calcslice to compute a likelihood slice between the two putative

book August 29, 2007

326 CHAPTER 7

fits to make sure that the surface is really higher between them.

If your surface contains several minima, the simplest solution may be
to use a simple, fast method (like BFGS) but to start it from many different
places. This will work if the surface is essentially smooth, but with two (or
many) valleys of approximately the same depth∗. You will need to decide
how to assign starting values (randomly or on a grid? along some transect?),
and how many starting values you can afford to try. You may need to
tune the optimization parameters so that each individual optimization runs
as fast and smoothly as possible. Researchers have also developed hybrid
approaches based on multiple starts (Tucci, 2002).

When multiple minima occur it is possible, although unusual, for the
95% confidence limits to be discontinuous — that is, for there to be separate
regions around each minimum that are supported by the data. This does
happen in the case shown in Figure 7.10, although on the scale of that figure
the confidence intervals in the regions around x = 0 and x = 1 would be
almost too small to see. More commonly, either one minimum will be a
lot deeper than the other so that only the region around one minimum is
included in the confidence region, or the minima will be about the same
height but the two valleys will join at the height of the 95% cutoff so that
the 95% confidence interval is continuous.

If the surface is jagged instead of smooth, or if you have a sort of frac-
tal surface — valleys within valleys, of many different depths — a stochas-
tic global method such as simulated annealing is probably your best bet.
Markov chain Monte Carlo can in principle deal with multiple modes, but
convergence can be slow — you need to start chains at different modes and
allow enough time for each chain to wander to all of the different modes
(see Mossel and Vigoda, 2006; Ronquist et al., 2006, for a related example
in phylogenetics).

7.4.5 Constraints

The last technical detail covered here is the problem of constraining param-
eter values within a particular range. Constraints occur for many reasons,
but the most common constraints in ecological models are that some pa-
rameters make sense only when they have positive values (e.g. predation
or growth rates) or values between 0 and 1 (e.g. probabilities). The three
important characteristics of constraints are:

∗The many-valley case, or rather its inverse the many-peaks case (if we are maximizing rather
than minimizing), is sometimes known as a “fakir’s bed” problem after the practice of sitting on
a board full of nails (Swartz, 2003).

book August 29, 2007

OPTIMIZATION AND ALL THAT 327

i) Equality vs. inequality constraints: must a parameter or set of pa-
rameters be exactly equal to some value, or just within boundaries?
Constraints on individual parameters are always inequality constraints
(e.g. 0 < p < 1). The most common equality constraint is that prob-
abilities must sum to 1 (

∑N
i=1 pi = 1).

ii) Constraints on individual parameters vs. constraints on combinations.
Inequality constraints on individual parameters (a1 < p1 < b1, a2 <
p2 < b2) are called box constraints. Constraints on linear combinations
of parameters (a1p1 + a2p2 < c) are called linear constraints.

iii) Whether the constraint equations can be solved analytically in terms
of one of the parameters. For example, you can restate the constraint
p1p2 = C as p1 = C/p2.

For example, in Chapter 8 of the Ecological Detective, Hilborn and Mangel
constrain the equilibrium of a fairly complex wildebeest population model
to have a particular value. This is the most difficult kind of constraint; it’s
an equality constraint, a nonlinear function of the parameters, and there’s
no way to solve the constraint equation analytically.

The simplest approach to a constrained problem is to ignore the con-
straint completely and hope that your optimizing routine will find a min-
imum that satisfies the constraint without running into trouble. You can
often get away with this if your minimum is far away from the boundary,
although you may get warning messages that look something like Warning
message: NaNs produced in: dnbinom(x, size, prob, log). If your
answers make sense you can often ignore the warnings, but you should defi-
nitely test the results by re-starting the optimizer from near its ending point
to verify that it still finds the same solution. You may also want to try some
of the other constrained approaches listed below to double-check.

The next simplest approach to optimization constraints is to find a
canned optimization algorithm that can incorporate constraints in its prob-
lem definition. The optim function (and its mle2 wrapper) can accom-
modate box constraints if you use the L-BFGS-B method. So can nlminb,
which was introduced to R more recently and uses a different algorithm. R
also provides a constrOptim function that can handle linear constraints.
Algorithms that can fit models with general nonlinear equality and inequal-
ity constraints do exist, but they have not been implemented in R: they
are typically large FORTRAN programs that cost hundreds or thousands
of dollars to license (see below for the cheapskate ecologist’s approach to
nonlinear constraints).

book August 29, 2007

328 CHAPTER 7

Constrained optimization is finicky, so it’s often useful to have addi-
tional options when one method fails. In my experience, constrained algo-
rithms are less robust than their unconstrained counterparts. For example
L-BFGS-B, the constrained version of BFGS, is (1) more likely to crash than
BFGS; (2) worse at handling NAs or infinite values than BFGS; and (3) will
sometimes try parameter values that violate the constraints by a little bit
when it’s calculating finite differences. You can work around the last prob-
lem by setting boundaries that are a little bit tighter than the theoretical
limits, for example a lower bound of 0.002 instead of 0.

The third approach to constraint problems is to add a penalty to the
negative log-likelihood that increases as parameter values stray farther out-
side of the allowed region. Instead of minimizing the negative log-likelihood
−L, try minimizing −L+P × (|C−C(p)|)n where P is a penalty multiplier,
n is a penalty exponent, C is the desired value of the constraint, and C(p)
is the value of the constraint at the current parameter values (Hilborn and
Mangel, 1997). For example, if you were using P = 1000 and n = 2 (a
quadratic penalty, the most common type) and the sum of probabilities for
a set of parameters was 1.2 instead of the desired value of 1.0, you would
add a penalty term of 1000(1 − 1.2)2 = 40 to the negative log-likelihood.
The penalty term will tend to push minimizers back into the allowed region.
However, you need to implement such penalties carefully. For example, if
your likelihood calculation is nonsensical outside the allowed region (e.g. if
some parameters lead to negative probabilities) you may need to use the
value of the negative log-likelihood at the closest boundary rather than try-
ing to compute −L for parameters outside the boundary. If your penalties
make the surface non-smooth at the boundary, derivative-based minimizers
are likely to fail. You will often need to tune the penalty multiplier and
exponent, especially for equality constraints.

The fourth, often most robust, approach is to transform your param-
eters to avoid the constraints entirely. For example, if you have a rate or
density parameter λ that must be positive, rewrite your function and mini-
mize with respect to x = log λ instead. Every value of x between −∞ and
∞ translates to a positive value of λ; negative values of x correspond to
values of λ < 1. As x approaches −∞, λ approaches zero; as x approaches
∞, λ also approaches ∞.

Similarly, if you have a parameter p that must be between 0 and 1
(such as a parameter representing a probability), the logit transformation
of p, q = log p/(1 − p), will be unconstrained (its value can be anywhere
between −∞ and ∞). You can use qlogis in R to calculate the logit. The
inverse transformation is the logistic transformation, exp(q)/(1 + exp(q))
(plogis).

book August 29, 2007

OPTIMIZATION AND ALL THAT 329

The log and logit transformations are by far the handiest, and most
common, transformations. Many classical statistical methods use them to
ensure that parameters are well defined: for example, logistic regression fits
probabilities on a logit scale. Another less common but still useful transfor-
mation is the additive log ratio transformation (Aitchison, 1986; Billheimer
et al., 1998; Okuyama and Bolker, 2005). When you’re modeling propor-
tions, you often have a set of parameters p1, . . . , pn representing the proba-
bilities or proportions of a variety of outcomes (e.g. predation by different
predator types). Each pi must be between 0 and 1, and

∑
pi = 1. The sum-

to-one constraint means that the constraints are not box constraints (which
would apply to each parameter separately), and even though it is linear, it is
an equality constraint rather than a inequality constraint — so constrOptim
can’t handle it. The additive log ratio transformation takes care of the
problem: the vector y = (log(p1/pn), log(p2/pn), . . . , log(pn−1/pn)) is a set
of n − 1 unconstrained values from which the original values of pi can be
computed. There is one fewer additive log-ratio-transformed parameter be-
cause if we know n − 1 of the values, then the nth is determined by the
summation constraint. The inverse transformation (the additive logistic) is
pi = exp(yi)/(1 +

∑
exp(yi)) for i < n, pn = 1−

∑n−1
i pi.

The major problem with transforming constraints this way is that
sometimes the best estimates of the parameters, or the null values you want
to test against, actually lie on the boundary — in mixture or composition
problems, for example, the best fit may set the contribution from some
components equal to zero. For example, the best estimate of the contribu-
tion of some turtle nesting beaches (rookeries) to a mixed foraging-ground
population may be exactly zero (Okuyama and Bolker, 2005). If you logit-
transform the proportional contributions from different nesting beaches you
will move the boundary from 0 or 1 to ±∞. Any optimizer that tries to
reach the boundary will have a hard time, resulting in warnings about con-
vergence and/or large negative estimates that differ depending on starting
conditions. One option is simply to set the relevant parameters to zero
(i.e., construct a reduced model that eliminates all nesting beaches that
seem to have minimal contributions), estimate the minimum negative log-
likelihood, and compare it to the best fit that the optimizer could achieve.
If the negative log-likelihood is smaller with the contributions set to zero
(e.g. the negative log-likelihood for contribution=0 is 12.5, compared to a
best-achieved value of 12.7 when the log-transformed contribution is −20),
then you can conclude that zero is really the best fit. You can also compute
a profile (negative log-)likelihood on one particular contribution with val-
ues ranging upward from zero and see that the minimum really is at zero.
However, it may be too tedious to go to all this trouble every time you have
a parameter or set of parameters that appear to have their best fit on the
boundary.

book August 29, 2007

330 CHAPTER 7

One final issue with parameters on the boundary is that the standard
model selection machinery discussed in Chapter 6 (Likelihood Ratio Test,
AIC, etc.) always assumes that there are parameter values in the range on
either side of the null value. This issue is well-known but still problematic
in a wide range of statistical applications, for example in deciding whether
to set a variance parameter to zero. For the specific case of linear mixed-
effect models (i.e. models with linear responses and normally distributed
random variables), the problem is relatively well studied. Pinheiro and
Bates (2000) suggest the following approaches (listed in order of increasing
sophistication):

� Simply ignore the problem, and treat the parameter as though it were
not on the boundary — i.e. use a likelihood ratio test with 1 degree of
freedom. Analyses of linear mixed-effect models (Self and Liang, 1987;
Stram and Lee, 1994) suggest that this procedure is conservative; it
will reject the null hypothesis less often (sometimes much less often)
than the nominal type I error rate α∗.

� Some analyses of mixed-effect models suggest that the distribution of
the log-likelihood-ratio under the null hypothesis when n parameters
are on the boundary is a mixture of χ2

n and a χ2
n−1 distributions rather

than a χ2
n distribution. If you are testing a single parameter, as is most

often the case, then n = 1 and χ2
n−1 is χ2

0 — defined as a spike at zero
with area 1. For most models, the distribution is a 50/50 mixture of χ2

n

and χ2
n−1, which Goldman and Whelan (2000) call the χ̄2

n distribution.
For n = 1, χ̄2

1(1−α) = χ2
1(1− 2α). In this case the 95% critical value

for the likelihood ratio test would thus be qchisq(0.9,1)/2=1.35
instead of the usual value of 1.92. The qchibarsq function in the
emdbook package will compute critical values for χ̄2

n.

� The distribution of deviances may not be an equal mixture of χ2
n and

χ2
n−1 (Pinheiro and Bates, 2000). If you want to be very careful, the

“gold standard” is to simulate the null hypothesis and determine the
distribution of the log-likelihood ratio under the null hypothesis: see
p. 341 for a worked example.

7.5 ESTIMATING CONFIDENCE LIMITS OF FUNCTIONS OF

PARAMETERS

Quite often, you estimate a set of parameters from data, but you actually
want to say something about a value that is not a parameter (for example,

∗Whether this is a good idea or not, it is the standard approach—as far as I can tell it is always
what is done in ecological analyses, although some evolutionary analyses are more sophisticated.

book August 29, 2007

OPTIMIZATION AND ALL THAT 331

about the predicted population size some time in the future). It’s easy to
get the point estimate — you just feed the parameter estimates into the
population model and see what comes out. But how do you estimate the
confidence limits on that prediction?

There are many possibilities, ranging in accuracy, sophistication, and
difficulty. The data for an extended example come from J. Wilson’s observa-
tions of “death” (actually disappearance, which may also represent emigra-
tion) times of juvenile reef gobies in a variety of experimental treatments.
The gobies’ times of death are (assumed to be) distributed according to a
Weibull distribution,

f(t) =
a

b

(
t

b

)a−1

e−(t/b)a

. (7.5.1)

The Weibull distribution, common in survival analysis, has essentially the
same range of shape possibilities as the gamma distribution, from L-shaped
like the exponential to humped like the normal, and it allows for a per
capita mortality rate that either increases or decreases with time. The
Weibull (dweibull in R) has two parameters, shape (a above) and scale (b
above): when shape=1 it reduces to an exponential. It’s easy enough to
calculate the univariate or bivariate confidence limits of the shape and scale
parameters, but what if we want to calculate the confidence interval of the
mean survival time, which is likely to be more meaningful to the average
ecologist or manager?

First, pull in the data, take a useful subset, and define the death time
as the midpoint between the last time the fish was observed (d1) and the
first time it was not observed (d2)∗

> library(emdbookx)

> data(GobySurvival)

> dat = subset(GobySurvival, exper == 1 & density ==

+ 9 & qual > median(qual))

> time = (dat$d1 + dat$d2)/2

∗Survival analyses usually assume that the time of death is known exactly. With these data,
as is common in ecological studies, we have a range of days during which the fish disappeared. To
handle this so-called interval censoring properly in the likelihood function, we would have to find
the probability of dying after day d1 but before day d2. In R the negative log-likelihood function
would be:

> weiblikfun <- function(shape, scale) {

+ -sum(log(pweibull(dat$d2, shape, scale) - pweibull(dat$d1,

+ shape, scale)))

+ }

For this example, I’ve used the cruder, simpler approach of averaging d1 and d2.

book August 29, 2007

332 CHAPTER 7

Set up a simple likelihood function:

> weiblikfun = function(shape, scale) {

+ -sum(dweibull(time, shape = shape, scale = scale,

+ log = TRUE))

+ }

Fit the model starting from an exponential distribution (if scale=a =
1, the distribution is an exponential with rate 1/b and mean b):

> w1 <- mle2(weiblikfun, start = list(shape = 1, scale = mean(time)))

The parameter estimates (coef(w1)) are shape=0.921 and scale=14.378,
the estimate of the mean survival time (using meanfun and plugging in the
parameter estimates) is 14.945.

7.5.1 Profile likelihood

Now we’d like confidence intervals for the mean that take variability in both
shape and scale into account. The most rigorous way to estimate confidence
limits on a non-parameter is to calculate the profile likelihood for the value
and find the 95% confidence limits, using almost the same procedure as if
you were finding the univariate confidence limits of one of the parameters.

Figure 7.11 illustrates the basic geometry of this problem: the under-
lying contours of the height of the surface (contours at 80%, 95%, and 99%
univariate confidence levels) are shown in gray. The black contours show
the lines on the plot that correspond to different constant values of the
mean survival time. The dotted line is the likelihood profile for the mean,
which passes through the minimum negative log-likelihood point on each
mean contour, the point where the mean contour is tangent to a likelihood
contour line. We want to find the intersections of the likelihood ratio test
contour lines with the likelihood profile for the mean: looking at the 95%
line, we can see that the confidence intervals of the mean are approximately
9 to 27.

7.5.1.1 The value can be expressed in terms of other parameters

When the value for which you want to estimate confidence limits has a
formula that you can solve in terms of one of the parameters, calculating

book August 29, 2007

OPTIMIZATION AND ALL THAT 333

Shape

S
ca

le

0.5 0.7 0.9 1.1

5

10

15

20

25

●

Figure 7.11 Geometry of confidence intervals on mean survival time. Gray contours: uni-
variate (80%, 90%, 95%, 99%) confidence intervals for shape and scale. Black
contours: mean survival time. Dotted line: likelihood profile for mean survival
time.

book August 29, 2007

334 CHAPTER 7

its confidence limits is easy.

For the Weibull distribution the mean µ is given by

µ = scale · Γ(1 + 1/shape), (7.5.2)

Or, translating to R:

> meanfun = function(shape, scale) {

+ scale * gamma(1 + 1/shape)

+ }

How do we actually calculate the profile for the mean? We can solve
equation 7.5.2 for one of the parameters:

scale =
µ

Γ(1 + 1/shape)
(7.5.3)

Therefore we can find the likelihood profile for the mean in almost the same
way we would for one of the parameters. Fix the value of µ: then, for each
value of the shape that R tries on its way to estimating the parameter, it
will calculate the value of the scale that must apply if the mean is to be
fixed at µ. The constraint means that, even though the model has two
parameters (shape and scale), we are really doing a one-dimensional search:
it just happens to be a search along a specified constant-mean contour.

In order to calculate the confidence interval on the mean, we have to
rewrite the likelihood function in terms of the mean:

> weiblikfun2 <- function(shape, mu) {

+ scale <- mu/gamma(1 + 1/shape)

+ -sum(dweibull(time, shape = shape, scale = scale,

+ log = TRUE))

+ }

Find the maximum again, and calculate the confidence intervals —
this time for the shape and the mean.

> w2 <- mle2(weiblikfun2, start = list(shape = 1, mu = mean(time)))

> confint(w2, quietly = TRUE)

2.5 % 97.5 %
shape 0.6248955 1.281101
mu 9.1826049 27.038785

book August 29, 2007

OPTIMIZATION AND ALL THAT 335

We could also draw the univariate likelihood profile, the minimum
negative log-likelihood achievable for each value of the mean, and find the
95% confidence limits in the same way as before by creating a likelihood
profile for µ. We would use 1 degree of freedom to establish the critical
value for the LRT because we are only varying one value, even though it
represents a combination of two parameters.

7.5.1.2 Constrained/penalized likelihood

What if we can’t solve for one of the parameters (e.g. scale) in terms of
the value we are interested in (e.g. mean), but still want to calculate a
likelihood profile and profile confidence limits for the mean? We can use a
penalized likelihood function to constrain the mean to a particular value, as
described above in the section on constraints.

While this approach is conceptually the same as the one we took in
the previous section — we are calculating the profile by sliding along each
mean contour to find the minimum negative log-likelihood on that contour,
then finding the values of the mean for which the minimum negative log-
likelihood equals the LRT cutoff — the problem is much fussier numerically.
(The complicated code is presented on p. 342). To use penalties effectively
we usually have to play around with the strength of the penalty. Too strong,
and our optimizations will get stuck somewhere far away from the real min-
imum. Too weak, and our optimizations will wander off the line we are
trying to constrain them to. I tried a variety of penalty coefficients in this
case (penalty = C× (deviation of mean survival from target value)2) from
0.1 to 106. The results were essentially identical for penalties ranging from
1 to 104, but varied for weaker or stronger penalties. One might be able
to tweak the optimization settings some more to make the answers better,
but there’s no really simple recipe — you just have to keep returning to the
pictures to see if your answers make sense.

7.5.2 The delta method

The delta method provides an easy approximation for the confidence limits
on values that are not parameters of the model. To use it you must have a
formula for µ = f(a, b) that you can differentiate with respect to a and b.
Unlike the first likelihood profile method, you don’t have to be able to solve
the equation for one of the parameters.

The formula for the delta method comes from a Taylor expansion of

book August 29, 2007

336 CHAPTER 7

the formula for µ, combined with the definitions of the variance (V (a) =
E[(a− ā)2]) and covariance (C(a, b) = E[(a− ā)(b− b̄)]):

V (f(a, b)) ≈ V (a)
(

∂f

∂a

)2

+ V (b)
(

∂f

∂b

)2

+ 2C(a, b)
∂f

∂a

∂f

∂b
. (7.5.4)

See the Appendix, or Lyons (1991) for a derivation and details.

We can obtain approximate variances and covariances of the parame-
ters by taking the inverse of the information matrix: vcov does this auto-
matically for mle2 fits.

We also need the derivatives of the function with respect to the pa-
rameters. In this example these are the derivatives of µ = bΓ(1 + 1/a) with
respect to shape=a and scale=b. The derivative with respect to b is easy —
∂µ/∂b = Γ(1 + 1/a)) — but ∂µ/∂a is harder. By the chain rule

∂(Γ(1 + 1/a))
∂a

=
∂(Γ(1 + 1/a))

∂(1 + 1/a)
·∂(1 + 1/a)

∂a
=

∂(Γ(1 + 1/a))
∂(1 + 1/a)

·− 1
a2

, (7.5.5)

but in order to finish this calculation you need to know that dΓ(x)/dx =
Γ(x) · digamma(x), where digamma is a special function (defined as the
derivative of the log-gamma function). The good news is that R knows how
to compute this function, so a command like

> shape.deriv <- -shape^2 * gamma(1 + 1/shape) * digamma(1 +

+ 1/shape)

will give you the right numeric answer. The emdbook package has a built-in
deltavar function that uses the delta method to compute the variance of
a function:

> dvar <- deltavar(fun = scale * gamma(1 + 1/shape),

+ meanval = coef(w1), Sigma = vcov(w1))

Once you find the variance of the mean survival time, you can take the
square root to get the standard deviation σ and calculate the approximate
confidence limits µ± 1.96σ.

> sdapprox <- sqrt(dvar)

> mlmean <- meanfun(coef(w1)["shape"], coef(w1)["scale"])

> ci.delta <- mlmean + c(-1.96, 1.96) * sdapprox

If you can’t compute the derivatives manually, R’s numericDeriv function
will compute them numerically (p. 344).

book August 29, 2007

OPTIMIZATION AND ALL THAT 337

7.5.3 Population prediction intervals (PPI)

Another simple procedure for calculating confidence limits is to draw ran-
dom samples from the estimated sampling distribution (approximated by
the information matrix) of the parameters. In the approximate limit where
the information matrix approach is valid, it turns out that the distribution
of the parameters will be multivariate normal with a variance-covariance
matrix given by the inverse of the information matrix. The MASS package
in R has a function, mvrnorm∗, for selecting multivariate normal random
deviates. With the mle2 fit w1 from above, then

> vmat = mvrnorm(1000, mu = coef(w1), Sigma = vcov(w1))

will select 1000 sets of parameters drawn from the appropriate distribution
(if there are n parameters, the answer is a 1000×n matrix). (If you have used
optim instead of mle2 — suppose opt1 is your result — then use opt1$par
for the mean and solve(opt1$hessian) for the variance.) You can then use
this matrix to calculate the estimated value of the mean for each of the sets
of parameters, treat this distribution as a distribution of means, and find its
lower and upper 95% quantiles (Figure 7.12). In the context of population
viability analysis, Lande et al. (2003) refer to confidence intervals computed
this way as “population prediction intervals”.

This procedure is easy to implement in R, as follows:

> dist = numeric(1000)

> for (i in 1:1000) {

+ dist[i] = meanfun(vmat[i, 1], vmat[i, 2])

+ }

> quantile(dist, c(0.025, 0.975))

2.5% 97.5%
7.583425 24.471527

Calculating population prediction intervals in this way has two disad-
vantages:

� It blurs the line between frequentist and Bayesian approaches. Several
papers (including some of mine, e.g. Vonesh and Bolker (2005)) have

∗mvrnorm should really be called rmvnorm for consistency with R’s other distribution functions,
but S-PLUS already has a built-in function called rmvnorm, so the MASS package had to use a
different name.

book August 29, 2007

338 CHAPTER 7

D
en

si
ty

0.00

0.05

0.10

0 5 10 15 20 25 30

Mean survival time

PP interval

Bayes credible

Figure 7.12 Population prediction distribution and Bayesian posterior distribution of
mean survival time, with confidence and credible intervals.

used this approach, but I have yet to see a solidly grounded justifica-
tion for propagating the sampling distributions of the parameters in
this way.

� Since it uses the asymptotic estimate of the parameter variance-covariance
matrix, it inherits whatever inaccuracies that approximation intro-
duces. It makes one fewer assumption than the delta method (it
doesn’t assume the variance is so small that the functions are close to
linear), but it may not be all that much more accurate.

7.5.4 Bayesian analysis

Finally, you can use a real Bayesian method: construct either an exact
Bayesian model, or, more likely, a Markov chain Monte Carlo analysis for
the parameters. Then you can calculate the posterior distribution of any
function of the parameters (such as the mean survival time) from the pos-
terior samples of the parameters, and get the 95% credible interval.

book August 29, 2007

OPTIMIZATION AND ALL THAT 339

The hardest part of this analysis turns out to be converting between
R and WinBUGS versions of the Weibull distribution: where R uses f(t) =
(a/b)(t/b)a−1 exp(−(t/b)a), WinBUGS uses f(t) = νλtν−1 exp(−λtν). Match-
ing up terms and doing some algebra shows that ν = a and λ = b−a or
b = λ−1/a.

The BUGS model is:

model {
for (i in 1:n) {
time[i] ~ dweib(shape,lambda)

}
scale <- pow(lambda,-1/shape)
mean <- scale*exp(loggam(1+1/shape))
priors
shape ~ dunif(0,5)
lambda ~ dunif(0,1)

}

Other differences between R and WinBUGS are that BUGS uses pow(x,y)
instead of x^y and has only a log-gamma function loggam instead of R’s
gamma and lgamma functions. The model includes code to convert from
WinBUGS to R parameters (i.e., calculating scale as a function of lambda)
and to calculate the mean survival time, but you could also calculate these
values in R.

Set up three chains that start from different, overdispersed values of
shape and λ:

> lval <- coef(w1)["scale"]^(-coef(w1)["shape"])

> n <- length(time)

> inits <- list(list(shape = 0.8, lambda = lval), list(shape = 0.4,

+ lambda = lval * 2), list(shape = 1.2, lambda = lval/2))

Run the chains:

> reefgoby.bugs <- bugs(data = list("time", "n"), inits,

+ parameters.to.save = c("shape", "scale", "lambda",

+ "mean"), model.file = "reefgobysurv.bug",

+ n.chains = length(inits), n.iter = 5000)

Finally, use HPDinterval or summary to extract credible intervals or

book August 29, 2007

340 CHAPTER 7

quantiles from the MCMC output. Figure 7.12 compares the marginal pos-
terior density of the mean and the credible intervals computed from it with
the distribution of the mean derived from the sampling distribution of the
parameters and the population prediction intervals (Section 7.5.3).

7.5.5 Confidence interval comparison

Here’s a head-to-head comparison of all the methods we’ve applied so far:

method lower upper
exact profile 9.183 27.039
profile:penalty 9.180 27.025
delta method 7.446 22.445
PPI 7.583 24.472
Bayes credible 9.086 25.750

All methods give approximately the same answers. Despite answering
a different question, the Bayes credible interval is in the same range as the
other confidence intervals. The point to take away from this comparison is
that all methods for estimating confidence limits use approximations, some
cruder than others. Use the most accurate feasible approach, but don’t
expect estimates of confidence limits to be very precise. To paraphrase
a comment of Press et al. (1994), if the difference between confidence-
interval approximations ever matters to you, “then you are probably up
to no good anyway — e.g., trying to substantiate a questionable hypothesis
with marginal data”∗.

APPENDIX: TROUBLE-SHOOTING OPTIMIZATION

� make sure you understand the model you’re fitting

� check starting conditions

� check convergence conditions

� adjust parscale/restart from previous best fit

� switch from constraints to transformed parameters

� adjust finite-difference tolerances (ndeps)

∗Their original statement referred to whether to divide by n or n − 1 when estimating a
variance

book August 29, 2007

OPTIMIZATION AND ALL THAT 341

� switch to more robust methods (Nelder-Mead, SANN), or even just
alternate methods

� stop with NAs: debug objective function, constrain parameters, put
if clauses in objective function

� results depend on starting conditions: check slice between answer-
s/around answers: multiple minima or just convergence problems?

� convergence problems: try restarting from previous stopping point,
resetting parscale

� examine profile likelihoods

R SUPPLEMENT

7.5.6 Testing hypotheses on boundaries by simulating the null hypothesis

Suppose you want to test the hypothesis that the data set

> x = c(0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2,

+ 2, 2, 3, 4, 5)

comes from a negative binomial distribution against the null hypothesis that
it is Poisson distributed with λ = x̄ = 1.35.

A negative binomial fit (fit.nb=fitdistr(x,"negative binomial"))
gives a negative log-likelihood (-logLik(fit.nb)) of 31.38, while a Poisson
fit (fit.pois=fitdistr(x,"Poisson")) gives a negative log-likelihood of
32.12. The Likelihood Ratio Test

> devdiff = 2 * (logLik(fit.nb) - logLik(fit.pois))

> pchisq(devdiff, df = 1, lower.tail = FALSE)

says that the p-value is 0.22, but the corrected (χ̄2
1) test (pchibarsq(devdiff,df=1,lower.tail=FALSE))

says that p is only 0.22 — still not significant but stronger evidence.

To evaluate the hypothesis more thoroughly by simulation, we will
set up a function that (1) simulates Poisson-distributed values with the
appropriate mean; (2) fits a negative binomial and Poisson distributions
(returning NA if the negative binomial fit should happen to crash) and (3)
returns the deviance (twice the log-likelihood ratio):

book August 29, 2007

342 CHAPTER 7

> simulated.dev = function() {

+ simx = rpois(length(x), lambda = mean(x))

+ simfitnb = try(fitdistr(simx, "negative binomial"))

+ if (inherits(simfitnb, "try-error"))

+ return(NA)

+ simfitpois = fitdistr(simx, "Poisson")

+ dev = c(2 * (logLik(simfitnb) - logLik(simfitpois)))

+ }

Now simulate 3000 such values, throw out the NAs, and count the
number of replicates remaining:

> set.seed(1001)

> devdist = replicate(3000, simulated.dev())

> devdist = na.omit(devdist)

> nreps = length(devdist)

Calculate the proportion of simulated values that exceed the observed
deviance: this is the best estimate of the “true” p value we can get.

> obs.dev = 2 * (logLik(fit.nb) - logLik(fit.pois))

> sum(devdist >= obs.dev)/nreps

[1] 0.06247912

So, in this case where we have two reasons — small sample size and a
boundary condition — to doubt the assumptions of Likelihood Ratio Test,
the classical LRT turns out to be nearly four times too conservative, while
the boundary-corrected version (χ̄2) is only twice as conservative as it should
be.

7.5.7 Nonlinear constraints by penalization

Using penalties to implement an equality constraint or a nonlinear constraint
(neither of which can be done with built-in functions in R) is reasonably
straightforward: just add a penalty term to the negative log-likelihood. For
best results, the penalty should start small and increase with increasing
violation of the constraint (to avoid a discontinuity in the negative log-
likelihood surface).

book August 29, 2007

OPTIMIZATION AND ALL THAT 343

For example, to find the best shape and scale parameters for the
fish survival data while constraining the mean to equal a particular value
target.mu (use the fixed= argument in mle2 to specify the target value):

> weiblikfun3 <- function(shape, scale, target.mu,

+ penalty = 1000) {

+ mu <- meanfun(shape, scale)

+ NLL = -sum(dweibull(time, shape = shape, scale = scale,

+ log = TRUE))

+ pen = penalty * (mu - target.mu)^2

+ NLL + pen

+ }

> w3 <- mle2(weiblikfun3, start = list(shape = 0.9,

+ scale = 13), fixed = list(target.mu = 13))

If you have a problem where the function behaves badly (generates
infinite or NaN values) when the constraint is violated, then you don’t want
to calculate the likelihood for values outside the constraints. For example, if
we had to restrict shape to be greater than zero we could use the following
code snippet:

> if (shape > 0) {

+ NLL = -sum(dweibull(time, shape = shape, scale = scale,

+ log = TRUE))

+ pen = 0

+ } else {

+ NLL = -sum(dweibull(time, shape = 1e-04, scale = scale,

+ log = TRUE))

+ pen = penalty * shape^2

+ }

> NLL + pen

In other words, if the shape parameter is beyond the constraints, then use
the likelihood value at the boundary of the feasible region and then add the
penalty.

To use this constrained likelihood function to calculate confidence
limits on the mean, first, calculate the critical value of the negative log-
likelihood:

> critval <- -logLik(w1) + qchisq(0.95, 1)/2

book August 29, 2007

344 CHAPTER 7

Second, define a function that finds the best fit for a specified value of
the mean and returns the distance above the critical value (use the data=
argument in mle2 so that you can try out different values of the penalty):

> pcritfun <- function(target.mu, penalty = 1000) {

+ mfit <- mle2(weiblikfun3, start = list(shape = 0.85,

+ scale = 12.4), fixed = list(target.mu = target.mu),

+ data = list(penalty = penalty))

+ lval <- -logLik(mfit)

+ lval - critval

+ }

Third, define the range of mean values in which you think the lower
confidence limit lies and use uniroot to search within this range for the
point where the negative log-likelihood is exactly equal to the critical value:

> lowx <- c(5, 13)

> penlower <- uniroot(pcritfun, lowx)$root

Do the same for the upper confidence limit:

> upx <- c(14, 30)

> penupper <- uniroot(pcritfun, upx)$root

Try with a different value of the penalty:

> uniroot(pcritfun, lowx, penalty = 1e+06)$root

7.5.8 Numeric derivatives

Analytical derivatives are always faster and numerically stabler, but R can
compute numeric derivatives for you. For example, to compute the deriva-
tives of the mean survival time at the maximum likelihood estimate:

> shape <- coef(w1)["shape"]

> scale <- coef(w1)["scale"]

> numericDeriv(quote(scale * gamma(1 + 1/shape)), c("scale",

+ "shape"))

book August 29, 2007

OPTIMIZATION AND ALL THAT 345

scale
14.94548
attr(,"gradient")

[,1] [,2]
[1,] 1.039502 -8.40662

(the quote inside the numericDeriv command prevents R from evaluating
the expression prematurely). Of course, you can always do the same thing
yourself by hand:

> dshape = 1e-04

> x2 = scale * gamma(1 + 1/(shape + dshape))

> x1 = scale * gamma(1 + 1/shape)

> (x2 - x1)/dshape

scale
-8.404834

which agrees to two decimal places with the numericDeriv calculation.

7.5.9 Extracting information from BUGS and CODA output

R2WinBUGS returns its results as a bugs object, which can be plotted or
printed. The as.mcmc function in the emdbook package will turn this ob-
ject into an mcmc.list object for a multi-chain run, or an mcmc object for
a single-chain run. read.bugs in the R2WinBUGS package also works, but
requires an extra step. The mcmc and mcmc.list objects are more flexi-
ble — they can be plotted and summarized in a variety of ways (summary,
HPDinterval, densityplot, . . . see the help for the coda package). Once
you ensure that the chains in a multi-chain R2WinBUGS run have con-
verged, you can use lump.mcmc.list in the emdbook package to collapse
the mcmc.list object so you can inferences from the combined chains.

Using the reefgoby.bugs object derived from the WinBUGS run on
p. 339, calculate the Bayesian credible interval:

> reefgoby.coda <- as.mcmc(reefgoby.bugs)

> reefgoby.coda <- lump.mcmc.list(reefgoby.coda)

> ci.bayes <- HPDinterval(reefgoby.coda)["mean",]

book August 29, 2007

